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Big Q: Why are average nominal wages higher in bigger cities?

Standard model (Combes and Gobillon, 2015):

w`t =

(
p`t

A`t

r1−α`t

) 1
α

s`t ≡ T`ts`t

Can allow for. . .

– local fundamentals

– agglomeration (static + dynamic)

– worker and/or firm heterogeneity
– sorting
– matching
– selection

– multiple factors, goods, industries

– . . .
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Can allow for. . .

– local fundamentals

– agglomeration (static + dynamic)

– worker and/or firm heterogeneity
– sorting
– matching
– selection

– multiple factors, goods, industries

– . . .

Ex. 1: local fund. + static agglom.

w`t = Ā`L
σ
`t

Ex. 2: sorting (max`) + dynamic agglom.

wi`t = T`ts
i
`t with s

i
`t+1 = g(si`t,S`t)
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Big Q: Why are average nominal wages higher in bigger cities?

Standard model (Combes and Gobillon, 2015):

w`t =

(
p`t

A`t

r1−α`t

) 1
α

s`t ≡ T`ts`t

Can allow for. . .

– local fundamentals

– agglomeration (static + dynamic)

– worker and/or firm heterogeneity
– sorting
– matching
– selection

– multiple factors, goods, industries

– . . .

Researcher chooses mechanisms to include . . .

– dictated by which causal effect(s) the
researcher wants to identify

– then, standard model gives . . .
1. estimating equation(s)

lnwi
`t = FE` + FEi + . . .

2. identifying assumptions

Why does it matter?

– credibility of estimates

– determines policy motives and tradeoffs
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What do we already know?

1. Combes, Duranton, and Gobillon (2008)
+ Combes et al. (2012b)

– model: wi
t = T`(i,t),k(i,t)s

i
t

– results:
– sorting → 40-50% of spatial wage

disparities
– static agglom. elasticity ≈ 3% →

important, but lower than old lit.
– weak role for fundamentals

2. Combes et al. (2012a)

3. De la Roca and Puga (2017)

2 / 7



What do we already know?

1. Combes, Duranton, and Gobillon (2008)
+ Combes et al. (2012b)

2. Combes et al. (2012a)
– model: firm selection + static agglom.
– results: firm selection << agglom.

3. De la Roca and Puga (2017)
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What do we already know?

1. Combes, Duranton, and Gobillon (2008)
+ Combes et al. (2012b)

2. Combes et al. (2012a)

3. De la Roca and Puga (2017)
– model: CDG08 + city-specific value of

experience → dynamic agglom.
– results:

– city size wage premium = higher
wage level + faster wage growth
w/ permanent value

– dynamic effect stronger if initially
more skilled
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What do we already know?

1. Combes, Duranton, and Gobillon (2008)
+ Combes et al. (2012b)

2. Combes et al. (2012a)

3. De la Roca and Puga (2017)
– model: CDG08 + city-specific value of

experience → dynamic agglom.
– results:

– city size wage premium = higher
wage level + faster wage growth
w/ permanent value

– dynamic effect stronger if initially
more skilled

– negligible sorting on unobservables
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What this paper does

1. (simplified) theory: young sort according to. . .

max
`

{
T `sy + ε` + βE[Vo(eg(sy, S

y
` ))]

}
with g1, g2 ≥ 0 but g12 ≷ 0

2. quantification: French matched employer-employee data to estimate

ln sit+1 = αt + β ln sit + γln s`it + δ ln sitln s`it + uit

within the structure of the extended model (+ housing, migration costs, old matter)

3. policy: (simplified) optimality + moving vouchers cftl
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1. (simplified) theory: young sort according to. . .

max
`

{
T `sy + ε` + βE[Vo(eg(sy, S

y
` ))]

}
with g1, g2 ≥ 0 but g12 ≷ 0

2. quantification: French matched employer-employee data to estimate

ln sit+1 = αt + β ln sit + γln s`it + δ ln sitln s`it + uit

within the structure of the extended model (+ housing, migration costs, old matter)

3. policy: (simplified) optimality + moving vouchers cftl
– “equity-efficiency tradeoff” when supermodular → planner wants sharper sorting
– subsidize moves from bottom 1/4 cities to Paris, Lyon, Toulouse → lower spatial disparity

(treated workers gain, non-treated workers lose), but also lower agg. human capital
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What this paper does

1. (simplified) theory: young sort according to. . .

max
`

{
T `sy + ε` + βE[Vo(eg(sy, S

y
` ))]

}
with g1, g2 ≥ 0 but g12 ≷ 0

– old irrelevant, no migration costs → same logic as static model (cf. Davis and Dingel, 2019)
– g12 ≷ 0 is new, but still assumes SPAM equil., so g12 never too negative
– all results for approximation around T ` ≡ T , ∀`

2. quantification: French matched employer-employee data to estimate

ln sit+1 = αt + β ln sit + γln s`it + δ ln sitln s`it + uit (?)

within the structure of the extended model (+ housing, migration costs, old matter)

3. policy: (simplified) optimality + moving vouchers cftl

3 / 7



Comment #1: quantitative effects of ignoring city size

– Estimating (?) requires computing sit = wit/T `it → joint with estimating T `it

– static: T`it = Ā`itL
σ
`it
→ surprised by small dispersion in T `it (cf. Combes et al., 2012a)

– something about relative scale of T vs. s?

– dynamic: bigger city could lead to more interactions (Glaeser, 1999)

– Table 1, Col (2) estimates (?) + σ lnL`t → effect of size is OoM smaller than avg. skill
– but, estimates are joint: right test would be to specify full model with dynamic size effect,

then estimate (?) + σ lnL`t and see if σ still small
– size vs. pure composition is important! (see next slide)

– cheap suggestion: start by replicating De la Roca and Puga (2017) specification
– is their dynamic size effect really just picking up pure composition?
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Comment #2: normative effects of ignoring city size

– static: standard, independent of skill composition → not my focus

– dynamic: hardwired an extreme form of congestion
– guaranteed to meet, so just want to live near Einstein → all others bring down the avg.!

– ∆s̄Paris < 0 ⇐⇒ ∆γParis(s, ·) < 0 → vouchers just screw up composition

– but city size may affect probability of meeting anyone → E[sp|meet] vs. P(meet)
– cf. Crews (2023): reduce land use regulations in NY and SF

– NY and SF get bigger and more skilled, agg. growth ↑ 13bp
– composition of movers don’t change → primary channel is (skill-weighted) size

– could this dampen/eliminate the “equity-efficiency tradeoff”?
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Comment #3: breaking open the learning technology γ(sy, S
y
` )

I’m not sure allowing for submodularity is where the main value-added lies . . .

– skill sorting + faster wage growth → could we have even found g12 < 0?

Instead, with great matched employer-employee panel data . . .

– disentangle relative importance of size vs. composition (cf. “vibrancy” in Crews, 2023)

– engage with macro-labor literature on sources of wage inequality
– need heterogeneous learning ability in Ben-Porath (1967) model to explain earnings

distributions (Huggett, Ventura, and Yaron, 2011) → maybe we actually need
spatially-segmented learning

– how does (?) do in matching observed life-cycle earnings distributions?

– learning (this paper) vs. job ladders (Lhuillier, 2022)
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Recap

– a nice + well-executed paper

– well-positioned to teach us more about relative importance of city size vs. composition

– would love to see continued work on the spatial sources of wage inequality

thanks!
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